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ABSTRACT

This report addresses the design of human-automation interaction from a formal perspective that

focuses on the information content of the interface, rather than the design of the graphical user

interface. It also addresses the issue of the information provided to the user (e.g., user-manuals,

training material, and all other resources). In this report, we propose a formal procedure for

generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface

must be correct, i.e., that with the given interface the user will be able to perform the specified tasks

correctly. Second, the interface should be as succinct as possible. The report discusses the

underlying concepts and the formal methods for this approach. Several examples are used to

illustrate the procedure. The algorithm for constructing interfaces can be automated, and a

preliminary software system for its implementation has been developed.



INTRODUCTION

Humaninteractionwith automationissowidespreadthatalmosteveryaspectof our lives

involvescomputersystems,informationsystems,machines,anddevices.These machines are

complex and are comprised of many states, events, parameters and protocols. Yet, the only face the

user sees is the interface: always a (highly) reduced description of the underlying behavior of the

machine. This is no coincidence, because otherwise the user would be subjected to enormous

unnecessary complexity. Consider for example, consumer electronics where making the user-

interfaces and associated user-manuals as efficient, simple, and succinct as possible is becoming a

marketing imperative, and no longer is just an engineering and human factors ideal. As consumer

devices get increasingly complex and multifunctional, there is a reciprocal drive to render them

simpler and easier to use (and thereby more marketable).

In the majority of today's automated systems, the human is the supervisor. Users interact with

systems or tools to achieve certain operational tasks (Parssuramann et al., 2000). These tasks, or

task specifications, may involve the execution of specific sequences of actions (e.g., a procedure for

setting up a medical radiation machine), monitoring a machine's mode changes (e.g., an automatic

landing of an aircraft), or preventing a machine from reaching specified illegal states (e.g., tripping

a power grid). To achieve these task specifications, the user is provided with information about the

behavior of the machine. In most cases, this information is provided by means of an interface and

associated user-manuals and other training material.

Naturally, for the user to be able to interact with the machine correctly and reliably so as to

achieve the task specification, the information provided to the user must first and foremost be

correct. For example, if the pilot of an airliner has insufficient information to resolve a mode

transition and to decide whether, aider entering a command to the autopilot, the aircraft will enter

"climb" mode or "level-flight" mode, then one can say that the information provided to the pilot is



inadequate.Onesureway to guaranteesufficientinformationfor correctinteractionis to providethe

userwith thefull detail of the machine behavior. This way the user can, in principle, always track

the status of the machine correctly and reliably. But this amount of detail has an obvious downside

too; the size of interfaces and weight of user manuals will be huge, and the burden on the user

incomprehensible and unmanageable.

In practice, the interface and related user manuals are always a reduced, or abstracted,

description of the machine's behavior. No interface provides a complete description of the

underlying behavior of the machine. Therefore, a major concern of designers of automated systems

is to make sure that these abstracted interfaces and manuals are indeed adequate and correct.

Currently, this evaluation is performed in an ad hoc fashion. It usually involves costly simulations

and extensive testing, and in industries such as aerospace and medical equipment, it also involves

complicated certification procedures (see for example Federal Aviation Regulation 25.1329 and

associated Advisory Circular). Yet, despite the best efforts by design teams and certification

officials, numerous incidents and accidents involving incorrect interfaces have been reported in

aviation (Abbott, Slotte, and Stimson, 1996), maritime (National Transportation Safety Board,

1997), medical (Leveson, 1995 see Appendix A -- the Therac-25 accidents), and automotive

systems (Andre and Degani, 1997). Even in simpler consumer devices, flaws in the user interface

design are frequently encountered.

Developing a correct interface is only one requirement. In addition, we all strive for interfaces

and user-manuals that are simple and easy to use. One basic aspect of this requirement is to develop

interfaces and user-manuals that are succinct. That is, the number of states and events that the user

needs to understand and track in order to operate the system correctly should be as small as

possible. Currently, the design decisions as to what information must be provided to the user, both



in theinterfaceandinuser-manuals,aremadeintuitively.Systematicmethodologiesdonotexistfor

thesedecisions.

Oneof theoutcomesof havingincorrectandextremelycomplexinterfacesisacommon

problemcalled"automationsurprises,"whereoperators(e.g.,pilots,technicians,users)have

difficulty understandingthecurrentstatusof anautomaticsystemaswell astheconsequencesof

theirinteractionwith it (Woods,Sarter,andBillings,1997).

In anearlierpaperandarecentNASATechnicalMemorandum(DeganiandHeymann,inpress;

2000),wediscussedamethodologyfor evaluatinginterfacesandusermanuals.Givenadescription

of themachine,specificationsof theuser'stask,interface,andall relevantinformationtheuserhas

aboutthemachine,theprocedureevaluateswhetherthe interfaceandusermanualinformationare

correctfor thetask.That is, can the user achieve all the specified tasks correctly and reliably, given

all the information provided? The proposed procedure can be automated and applied to the

verification of large and complex human-machine systems.

In this report we take an additional step and discuss a formal methodology for automatic

generation of interfaces and user manuals. The requirement, of course, is that the interfaces and user

manuals be both correct and succinct. The design problem can be/_'ormuiated as follows: The

machine and the user's operational requirements (task specifications) are given. Now the problem is

to generate an interface and associated user information that enables the user to interact with the

machine correctly. It is further required that the interface and all user information be as simple and

as succinct as possible. Naturally, additional considerations must be taken into account to ensure

efficient human-machine interaction. These include graphical user interface design, cognitive

limitations, human physical abilities, and the like. But underlying all is the basic correctness issue

on which we focus our attention t_ere.



Thereportisorganizedasfollows: Webeginby discussingthefour componentsof human-

machineinteractionthatarepartof ourtheoryandmethodology:themachine,thetask

specification,theinterface,andusermodel.Wethenusethesefourelementsto verify the

correctnessof aproposedinterfacefor agivenmachine.Next,weturnto themaintopicof this

report,a formalmethodologyfor constructinginterfacesandrelateduserinformation(e.g.,user-

manuals).Herewedescribeaprocedurefor abstractingamachinemodelto themostsuccinct

descriptionthatenablescorrectuser-machineinteraction.Weillustratethisprocedurewith an

exampleof atransmissionsystemin acarandthenshowothercharacteristicsof abstractionusing

anexampleof asomewhatmorecomplexmachine.Finally,weconcludewithabrief summaryand

discusssomeof the implicationsof thisworkfor designersof automatedsystems.

FORMAL ASPECTS OF HUMAN-AUTOMATION INTERACTION

Many aspects of the human-machine interaction, such as the design of interfaces in terms of

their graphical appearance (which is still highly empirical and intuitive), are not amenable to formal

analysis and design. Yet aspects of interaction that concern the information content provided to the

user about behavior of a system can be formally analyzed, and thus can be systematically verified

and designed. Here the emphasis is on questions regarding "what" information must be provided to

the user and "when," rather than on "how" this information is to be presented.

In this work we focus primarily on the information content provided to the user about the

behavior of a system. This aspect of user interaction with machines can be described and analyzed

formally by considering the following four elements: (1) the machine-model, (2) the operational

tasks, (3) the machine's interface with the user, and (4) the user's model of the machine, i.e., the

information provided to the user about the machine behavior (e.g., in the user manual). Let us

briefly review these elements.



Machine

As stated earlier, we consider machines that interact with their environment and specifically

with their human users. We focus our attention on the behavior of machine states, transitions, and

events. The machines are modeled as state transition systems (in particular finite state machines).

A state represents a mode, or configuration, of the machine. Transitions represent discrete-state

(mode) changes that occur in response to events that trigger them. Some of the transitions occur

only if the user triggers them, while other transitions occur automatically and are triggered by the

machine's internal dynamics, or its external environment.

Figure 1 about here

To illustrate a typical machine model, let us consider the machine of Figure 1, which describes a

simplified multi-mode three-speed transmission system proposed for a certain vehicle. We use the

convention that user-triggered transitions are described by solid arrows, while automatic transitions

are depicted by dashed arrows. The transitions are labeled by symbols to indicate the (triggering)

circumstances under which the machine moves from state to state. The transmission has eight states,

or modes. These modes are grouped into three super-modes that represent manually switchable

gegrS (or speeds): low, medium and high. The stat_s within each speed represent intemal torque-

level modes. Thus there are torque modes L1, L2, L3, in the low speed super mode; there are torque

modes M1, M2, in the medium speed super mode; and modes H1, H2, H3, in the high speed super

mode. The transmission shifts automatically between torque modes (based on torque, throttle, and

engine and road speeds). The automatic up-shifts (to higher torque modes) are denoted by the event

symbol 6 and the automatic down-shifts by the symbol y. The (user operated) manual speed

changes, achieved by pushing a lever up or down, are denoted in the Figure by the event symbols

/3 and /9, respectively. Pushing the lever up shifts to a higher speed and pushing down shifts to a



lowerspeed.The transmission is initialized in the low torque mode L1 of the low speed (as

indicated in the Figure by the free incoming arrow).

Task Specifications

The second element is the specification of the operational tasks the user is required to perform

whiIe using the machine. For example, a common task specification in an automated control system

is that the user be able to determine unambiguously the current and the subsequent mode of the

machine.

In terms of a formal description, the task specification consists of a partition of the machine's

state-set into disjoint clusters that we shall call specification classes (or modes) that the user is

required to track unambiguously. In other words, does the user know whether the system is

currently in, or is about to enter into, the super-mode High, Medium, or Low? We note that the user

is not required to track every internal state change of the machine: for example, between the modes

L1, L2 and L3 inside mode Low.

Interface

The third element is the user interface. In practice, the interface consists of a control unit

through which the user enters commands (e.g., mode selections, parameter changes) into the

machine, as well as a display through which the machine presents information to the user.

Generally, the interface provides the user a simplified view of the machine. Not all the events of the

machine are annunciated to the user, and the interface displays only partial information about the

actual behavior of the machine.

Formally, the interface consists of a listing and description of the events accessible to the user.

These include, of course, all the user-triggered events (inputs to the machine), but generally only a

subset of the events that are associated with automatic transitions. This is because some of the latter



arenotmonitoredatall, andothersaremonitoredonlyin groups.The interface annunciation tells

the user only that one of the events in the group took place, without specifying which.

It is noteworthy that events per se cannot be displayed in the interface. What can be displayed is

some consequence of their occurrence. Therefore, events are usually represented by display modes

that become active as a result of the event occurrence. (How these modes are presented to the user

graphically (e.g., icon shape, color, etc.) is beyond the scope of this report).

To illustrate, let's return to the multi-mode transmission model of Figure 1. The system in

Figure 2 gives one possible user interface for this model. Here the monitored events are only the

ones triggered by the user. In the Figure 2 we have also provided a description of the three display

modes, as well as how the user would observe the machine's behavior when all automatic

transitions are internalized and unobserved. Note that the torque modes are completely suppressed

from view.

Figure 2 about here

An alternate interface for the transmission is provided in Figure 3. Here the monitored events

consist of the user-triggered events as well as the automatic transitions. Again, we provide a

possible description of how the user might observe the machine behavior. Note that wherever the

automatic transitions do not trigger a state change in the user model, they are shown by (gray) self-

loops to indicate the fact that the user-model "is aware" of the possibility that these events might

take place without its actual participation.

Figure 3 about here



User model.

As mentioned earlier, the interface provides the user with a simplified view of the machine, in

that it displays only partially the machines internal behavior. The description of the machine's

operation that is provided to the user is generally also an abstracted simplification of the actual

machine behavior. This description is usually provided in terms of a user manual, training material,

formal instruction, or any other means of teaching the user; however, it is presented here as a formal

model that we refer to as the user model &the machine. By its very nature, the user-model is based

on the interface through which the user interacts with the machine, and thus relates to the modes

and events that are displayed there. Therefore, for analysis purposes the interface events and modes

are all explicitly referred to in the user-model, and in this respect can be thought of as "embedded"

in the user-model.

Let us return to the user interface displayed in Figure 2. This Figure depicts a possible user-

model associated with the interface that monitors only the user-triggered events for the transmission

system. This particular user-model can be obtained from the machine model of Figure 1 by

suppressing (internalizing) the events that are not monitored, and grouping the states as suggested

by the specification. It can be seen that the manual shifts from MEDIUM up to HIGH or down to LOW,

as well as the down-shift from HIGH to MEDIUM, are always completely predictable. However, the

up-shift from the LOW gear depends on the current torque mode. Note that the up-shifts from L1

and L2 switch the transmission to MEDIUM speed, while the up-shift from L3 switches the

transmission to the HIGH speed. Therefore, from tile suggested interface of Figure 2, it cannot be

predicted whether the up-shift will lead the transmission from LOW to MEDIUM, or to HIGH gear.

An alternate user-model for the transmission model is presented in Figure 3. This user-model

describes an interface that also monitors the occurrences of two Specific automatic transitions, in

addition to all user-actuated events. This user-model, in particular, is aimed at enabling the operator



10

to determinewhetherthetransmissionis inadisplay-modeLOW-1 (where an up-shift is supposed to

lead to MED:UMspeed), or in the display-mode Log/-2 (where an up-shift leads to HIGH).

Correctness of interaction

Among the four elements that pray a role in the human automation interaction, the machine

model and the task specification must be regarded for our purpose as given and beyond dispute,

because they are not subject to our scrutiny. In contrast, the interface and the user model, which are

the subject of investigation in the present report, must be examined for correctness. Specifically, we

wish to know whether a given interface and user model enable the user to operate the machine

correctly so as to satisfy thc specification.

This verification problem was the focus of a recent paper (Degani and Heymann, in press) in

which a methodology was described for verification of user-model and interface correctness for a

given machine-model and specification. It was shown that the user model and interface are correct

if, in a composite model obtained through a suitably defined synchronous composition of the

machine model and the user model (see Figure 4), there exist no error states and no blocking states.

An error state represents a divergence between the machine and user models - the user model does

not indicate the correct specification mode the machine is in! A blocking state is one in which the

machine can trigger a monitored transition that the user-model does not recognize.

Figure 4 about here

Next, we briefly review the discussion of our recetJt paper (Degani and Heymann, in press)

about the verification problem. This will also introduce us to terminology that will be required for

the discussion of the main issues of the present report.

As we have already stated, the interface and user-model are intended to provide an abstracted

and reduced description of the machine. This abstracted description does not enable the user to



11

determinewith certaintyeachstatethemachineis in,sinceit is requiredonlythattheuserbeableto

determinewhichspecif]cation-class(mode)themachineis in andwhich it is aboutto enter.Let ZM

denotethesetof events,or transition labels, that take place in the actual machine model. The events

that ultimately appear in the associated user-model and are displayed in the interface constitute a

reduced subset of the set Z M of machine events. This reduction, or abstraction, is achieved through

a projection operation Ki : Z M --> Zus R as explained next, where Y-'usRis the event set that is

displayed in the interface and appears in the user-model.

The event set ZMconsists of three disjoint subsets: (1)Z_ - the set of observed-events that

includes all machine events that are actually presented in the interface and appear also in the user-

model; (2) Z_ - the set of masked events (that are not displayed individually, but rather are grouped

into sets of two or more events each, with each set having a single event-label in the user-model;

and (3) Z_ - the set of unobserved-events that are neither displayed nor appear in the user-model.

In view of the above, the event set ZvsR of the machine's user-model consists of the union of the

event sets I-I(E_) (which is identical to E_), the event set l-i(E_) which denotes the set of events

obtained after masking the events in Y_, and the "empty event" _"(-- I-I(E_ ) ) that represents the

set of unobserved events.

In actual operation, the machine is driven by events from Za4. The user tracks the progress of

the machine via the interface (display), where he or she observes events in Eus R, with the aid of the

associated user-model. Thus, the user-model and the machine evolve concurrently. But they are

only partially synchronized, in that the user-model tracks the actual state evolution of the machine

with some uncertainty. This is because (1) not all machine events are observed and some machine-

events are masked, and (2) the user-model is only an abstraction of the actual machine's behavior.
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Supposethatthemachineisatstateq at which a transition labeled c_ is defined, leading to a

state q'(we denote this by q--_-_q' ). Assume that when the machine is at state q, the user-model

is at a corresponding statep. Event _ can be either observed, masked, or unobserved.

If c_ is an observed event and hence I-I(c0 = c_, it is required for adequacy of the user-model

that a corresponding transition be also defined at configuration p, leading to p'. That is, there must

exist a transition p____2___p,. In the concurrent operation of the machine and the associated user-

model, there will appear a transition labeled _ from the state pair (q,p) to the state pair (q ',p ).

That is, there will be a "composite" transition (q, p)--_--_(q', p').

If c_ is a masked event, there will be a corresponding transition p n(_ >p, in the user-model,

where I-I(c0 is the (masked) image of c_ in Zus e . The composite transition will appear as

(q, p) r_(_ >(q,,p,). The fact that the event labels are taken from the user-model is because the

composite transition is viewed from the point of view of the user.

Finally, if _ is unobserved and 1-I(a) = c, the composite transition will appear as

(q, p)__2____(q,, p), since there is no corresponding transition in the user-model and the transition is

"viewed" by the user as the empty or silent transition.

For the user-model to be correct for the task specification, it is necessary that the user-model be

able to track the machine-model's specification classes unambiguously. More explicitly, it is

required that when the user-model enters a state p in response to an observed event string t, all

possible states q that the machine-model could have entered in response to machine event strings s

for which I'I(s) = t, would belong to the same specification class.
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Beforeproceeding with the discussion, let us use our methodology to verify whether the user

model of Figure 3 is correct. Recall that this user-model is aimed at enabling the operator to

determine unambiguously which speed the transmission is in or is about to enter. The composite

model of the machine of Figure 1 and the user model of Figure 3 is shown in Figure 5. Here we can

readily see the error state (M1,High) which is entered upon executing the event sequence 8,6' (6'

followed by/5'). It is evident that the user model of Figure 3 is incorrect.

Figure 5 about here

It is of course possible to try out other interfaces and user-models and then employ the

verification procedure to determine their correctness. However, such an approach is not likely to be

very fruitful: It may take considerable effort to develop and verify one design after the other, with

no guarantee of success. Furthermore, even when a correct interface is found, there is no assurance

that it is the simplest. The development of a systematic approach for constructing interfaces that are

both correct and succinct is the subject of the next Section.

MACHINE MODEL REDUCTION

In the previous section we have seen which conditions the user-model and interface must satisfy

in order to enable the user to perform correctly a specified task on a given machine. We have also

reviewed a procedure for verifying that these conditions indeed hold true. However, the question

remains open as to how a correct interface and user model can be designed systematically for a

given task.

As mentioned earlier, one possible choice of user model is to take the full machine model as

user model and the complete machine event set as the set of monitored events. If the machine model

is deterministic (as we assume throughout this report), this will insure that there will never be any

problem in predicting the next state of the machine. But the operator would be required to track



14

everystateandevery,eventin themachine- aformidableandimpracticaljob. In thesimple

exampleof Figure1,themachinehas8states,18transitionsand4 distincttransitionlabels.Butthis

is atinynumberwhencomparedto "industrialsize"situations.

In thissectionweshallturnto themainissueof thereportanddescribeaprocedurefor the

generationof all optimal user models and interfaces for a given machine model and task

specification. In particular, we shall consider the problem of constructing, for a given machine and

task specification, the set of all best possible user-models and event abstractions that satisfy the

specification. Here, by best user models and interfaces we mean the ones that cannot be further

reduced! Since, as we shall see, these user models (and associated event abstractions) are generally

not unique, we cannot speak of user-model "synthesis," but rather, of machine model reduction. We

shall show how all "smallest" user models and associated interfaces can be derived.

Compatible state sets and covers

We assume that the machine-model is given as a state machine and that the task specification is

given as a partition of the state-set into disjoint classes of states that we refer to as specification

classes (Degani and Heymann; in press). Thus, each state of the machine model belongs to a unique

specification class. (In Figure 1 which depicts the multi-mode three speed transmission, the

specification classes consist of the three speeds; Low, Medium and High. Each state, or mode,

belongs to exactly one speed.)

Let us consider a machine-model given as a state-machine, and let the task specification consist

of a partition of the machine-model's state set Q into disjoint specification classes Q_,..., Q_ (as

described, for example, in Figure 1 where l = 3 ).

The user model must enable the user to operate the system correctly with respect to the

specification classes. That is, it must enable the user to track the specification classes but not
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necessarilyindividualstates.Thus, the user does not need to be able to distinguish (by means of the

user model and interface) between two sta_es p and q of the same specification class, if for the

purpose of tracking the specification classes unambiguously it is sufficient for the user to know that

the machine visited either p or q. More explicitly, the user does not need to be able to distinguish

between p and q if the specification class visited following any user-machine interaction starting

in state p, is the same as the specification class visited following the same user-machine interaction

starting at state q. This leads to the following definition: Two states, p and q, are spec_cation

equivalent (or compatible), if given that the machine is presently in either state p or q (of the same

specification class), the specification classes to be visited under future inputs will be the same.

Stated more formally, we have

Definition: Two states p and q are specification compatible if and only if the

following two conditions both hold:

I. The states p and q belong to the same specification class,

2. If p' and q' are states such that there exists an event string s = o'_...o', for which

p__.a._p, and q__Z__>q, are both defined, then p' and q' belong to the same

specification class.

It is clear that if the only concern is to track the specification classes, two specification

compatible states need not be distinguished in the user model. We may also conclude immediately

that any set of states is specification compatible if all the pairs of states within that set are

specification compatible.

Thus, if an efficient procedure is found for computation of all specification compatible pairs, the

set of all compatible state sets will easily computed. Indeed, the compatible triples will be obtained
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asthestatetriples,all of whosepairsarecompatible;compatiblequadruplesasthequadruplesall of

whosetriplesarecompatible,andsoon.

Next,wehavethefollowing:

Definition: A setC of compatible sets of states is called a cover of the state set of the

machine-model, if every state of the machine-model is contained in one or more elements of

C.

Since a set that consists of a single state is (trivially) compatible, it follows that every state is

included in at least one compatible set, so that the set of all compatibles is always a cover.

Definition: A compatible set of states is called a maximal compatible set, if it is not a proper

subset of another compatible set; that is, if it is not contained in a bigger compatible set of

states.

Since sets that consist of a single state are compatible, it is clear that every state is contained in

at least one maximal compatible set. It follows that the set of maximal compatibles is a cover.

Definition: A cover C of compatibles is called a minimal cover, if no proper subset of C is

a cover.

Of particular interest to us will be the set of all minimal covers formed from the set of maximal

compatibles. That is, we shall be interested in minimal covers whose component elements are

maximal compatible sets. In general, the number of such minimal covers can be greater than one.

We shall see below that minimal covers by maximal compatibles constitute the foundation of

the model reduction and interface generation procedure. However, we shall first show the set of

compatibles is computed.
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Generation of compatible pairs

As stated above, the computation of compatible sets hinges on the construction of the set of all

compatible pairs. An efficient iterative algorithm for construction of compatible state pairs is based

on the use of merger tables (see e.g., Paull and Ungar 1959, and Kohavi 1978, where related model

reduction problems are discussed).

Figure 6 about here

A merger table is a table of cells representing distinct state pairs. An initial table for the eight

states &our transmission example is shown in Figure 6. Each ceil &the table corresponds to a pair

of distinct states, and each pair of distinct states appears in the table exactly once.

Next, we have the following observations that can be easily derived from the definition of

compatible pairs:

A state pair (p,q) of the same specification class is compatible if and only if for every event

symbol cr such that p__E__p, and q__E__q, are both defined, it is true that either p'= q', or

the pair (p', q') is compatible.

We shall use the above characterization of compatibIe sets to obtain a complementary

characterization of all pairs that are not compatible (or incompatible). It will then be convenient for

us to compute recursively the set &all incompatible pairs. The set of compatible pairs will then

consist of all state pairs that are not found to be incompatible. Based on the above characterization

of compatible pairs, the characterization of incompatible pairs is as follows:

A state pair (p,q) is incompatible if and only if either p and q belong to distinct

specification classes, or there exists an event symbol cr for which p _ p' and q _ q'

are both defined, and the state pair (p',q') is incompatible.
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Usingtheaboveobservationsregardingcompatibleandincompatiblepairs,thedeterminationas

to whetherastatepairiscompatibleor incompatibleiscomputediterativelyasfollows.

1. Foreachstatepair (p, q) that can be determined as incompatible in the first step based

on the above characterization (i.e., if p and q belong to distinct specification classes),

we mark the corresponding cell F (for false). For all other state pairs, we write in their

cells their associated transition pairs that consist of all distinct state pairs (p', q') for

which there exists an event symbol o', such that the transitions p _ p' and

q _ q' are both defined.

Figure 7 about here

For illustration, the initial resolution table for the transmission model of Figure 1 is presented in

Figure 7. Notice that each transition pair in the table has been subscripted with the associated event

label. This subscription is not essential to the algorithm and is for the reader's convenience only.

Notice further that the cell (H1,H3) is empty because it is neither incompatible nor has associated

transition pairs.

Next, the table is resolved iteratively.

2. At each step of the iteration every state pair that has not yet been determined as F is

updated as follows: If the cell of a state pair (p,q) includes a transition pair (p',q')

whose cell has already been determined as F (incompatible), then the cell of (p, q) is

also denoted F. Otherwise, the cell of (p,q) is modified as follows: Each transition pair

(p', q') in the cell of (p,q) is replaced by all the transition pairs that appear in the cell

of (p',q').
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3. If in agiveniterationstepnonewincompatiblestatepairsarefound(i.e.,nonewF

designations are added to the table), then all the state pairs that are not designated as F,

are given the designation T (for true). This completes the table resolution procedure and

the determination of all compatible pairs.

To illustrate the iteration steps of the procedure, let us return to our transmission example. The

table of Figure 8 is obtained from that of Figure 7 as follows: First we replace the transition pairs in

the cell (LI,L2) by those in the cell (L2,L3). The cells (L1,L3) and (L2,L3) are denoted with F

because their cells include incompatible pairs. The remaining undecided state pairs (those that have

not yet been given the value F) are modified according to the algorithmic procedure. For example,

in the cell (M1,M2) we list the transition pairs from the table of Figure 7 of the cell (H1,H2) that

consists of (H2,H3).

Figure 8 about here

In the next resolution step the table of Figure 9 is obtained. Here the cell (L1,L2) is marked F

upon substituting the value F of the cell (MJ, H],) which is incompatible. The remaining undecided

ceils are modified as specified by the algorithm. In fact, notice that no further change needs to be

made to the table.

Figure 9 about here

In the next step, no further incompatible pairs are created and the table remains identical to that

of Figure 9. At this point, all the remaining undecided cells are marked T a shown in the table of

Figure 10, concluding the table resolution.

Thus, as seen in Figure 10, for the example of Figure 1, the set of compatible pairs consists of

(M1,M2), (H1,H2), (Ill,I-f3), and (H2,H3). Notice that the states L J, L2 and L3 do not appear in
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anycompatiblepairsandthereforethesingletonsets(L1), (L2) and (L3) are clearly maximal

compatibles.

Figure 10 about here

Generation of the set of maxima/compatibles

The procedure for generation of maximal compatibles consists of first systematically creating all

compatible sets. We begin by computing all compatible triples, then compatible quadruples, then

quintuples, and so on. A compatible triple is a triple all three of whose pairs are compatible; a

compatible quadruple is a quadruple all of whose pairs are compatible, which is equivalent to a

quadruple whose four triples are all compatible, and so on. Once all compatibles are listed, the

maximal ones can easily be computed by deleting from the list all compatibles that are contained

within larger ones.

For the transmission example, the maximal compatibles are easily found to be the sets (L1),

(L2), (L3), (MI,M2) and (H1,H2,H3). It is also not difficult to see that, in this case, they partition

the state set into disjoint subsets and hence form the (unique) minimal cover by maximal

compatibles.

Generation of reduced models

The generation of a reduced model that can serve as a correct user model for the given machine

and specification is based on an abstraction of the machine-model. This reduced model is obtained

by clustering the states into sets that consist of a minimal cover by maximal compatibles.

To this end, let us assume that a minimum cover consists of a given set of maximal compatibles

C1,..., Cl, where the set C,, i = l,...,l, consists of states {qi, ,..-, qJ,,} of the machine model. The

maximal compatibles C_,..., C_ form the state set of the reduced model. Here it is noteworthy that a

minimal cover by maximal compatibles need not be a partition of the state set into disjoint subsets.
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Specifically, while each state of the machine model must be contained within some maximal

compatible set, it may well be the case that a state is contained in more than one maximal

compatible of the minimal cover. That is, these sets may (sometimes) have overlaps.

Next, we turn to computing the transitions in the reduced model. An event symbol cr is said to

be active at Ci, if there exists an outgoing transition in the machine model labeled by or, at some

state qe C,. That is, there exists a state q' in the machine model, such that q---g-_q' is defined.

We denote by C.(cr) the set of all states qe Cj for which an outgoing transition labeled by o"

exists.

Next, we define S,(cr) to be the set of all states q' of the machine model, such that q _ q'

for some qe C_(o'). Thus, the set Si(o" ) is the set of all states of the machine model that can be

reached from states in C, through the event or. It readily follows from the definition of compatible

sets that there exists one or more element of C_,...,Cj which contain 5,.(o'). In the reduced model

we then create a transition labeled by cr going from the state C, to the state Cj, where Cj is the

maximal compatible that contains S,(cr). If more than one such set Cj exists, we can choose any

one of these (and to avoid non-determinism in the reduced model we choose exactly one).

To summarize, the reduced model associated with the minimal cover C_,..., C t is obtained as

follows. The state set of the reduced model consists of elements p_ ,..., p_ (think of p, as associated

with C i ). There is a transition labeled o- from p, to pj if Cj is the (chosen) set that contains

_(cr). The reduced model is initialized at state Pk if the machine model is initialized at a state in

C_ (where, as before, there may be more than one possible selection if the initialization state is

contained in more that one of the C, ).

21
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Figure11abouthere

Thereducedmodelobtainedforthetransmissionexampleis showninFigure11.The

correctnessof thisreducedmodelasausermodelfor thespecificationis verifiedinFigure12in

whichthecompositemodelwith themachinemodel&the transmission is displayed.

Figure 12 about here

Event Abstraction

The final step of the model reduction procedure consists of the abstraction of the reduced

model's event set (when possible). Specifically, we ask which events can be internalized (i.e., need

not be monitored) and which events can be clustered into groups so that instead of being monitored

individually, they be monitored collectively. That is, the user will be informed that some events in

the group occurred, but will not be informed which events of the group actually took place.

To this end the following abstraction rules apply:

1. An event can be internalized if it occurs in the reduced model only in self-loops.

2. A set of events can be grouped together, if every state transition that can be triggered by

any event of the group can also be triggered by any other event of the group.

In the transmission example no event abstractions are possible. An illustration of event

abstractions is provided in the example of the next section.

AN ABSTRACT MACHINE EXAMPLE

In the above discussion on verification and machine model reduction, we used an example of a

transmission system. In this final section, we shall apply the reduction algorithm to a somewhat

more complex machine. The machine in Figure 13 has 9 states and 25 transitions. There are three

specification classes: the gray region that includes states 7, 8, and 9; the wave-like region that
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harborsstate4and6; andtherestof thestatesof themachine(1,2, 3,and5).Thetaskspecification

issimilarto ourpreviousone:theuserhasto trackthemachinealongthesethreeregions(or

modes).Specifically,theusermustbeableto identifythecurrentmodeof themachineand

anticipatethenextmodeof themachineasaconsequenceof hisor herinteractions.

Figure13abouthere

We perform the reduction procedure along the steps described in the previous section. First the

table is constructed, and then the iterations are performed. The procedure terminates with only one

minimal cover of maximal compatibles that consists of four state sets: (1,3,5) (2,3,5) (4,6) (7,8) and

(9). Notice however, that this example illustrates a case in which the cover is not a partition of the

state set. Indeed, the state 3 is included in two distinct maximal compatibles.

Figure 14 about here

We then arbitrarily assign names to these sets, and call them A, B, C, D, and E, respectively.

The reduced machine is obtained upon computation of the abstracted transitions as explained

earlier, and is shown in Figure 14. It can be seen in this figure that the event ,o occurs only in the

self-loop in state A and that the events y and 8 are interchangeable. Thus, p can be internalized

and the events y and 8 can be grouped. The result of this event abstraction is presented in the final

reduced (user) model of Figure 15, which contains only 5 states and 16 transitions. The verification

result of this model is presented in Figure 16. No error states or blocking are detected.

Figures 15 and 16 about here
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CONCLUSIONS

In thisreportwediscussedseveralformalaspectsof the design of human-automation

interaction. Specifically, we focused attention on the construction and verification of correctness of

user models and interfaces. Two objectives guided us in our design and analysis: (1) that the

interfaces and user models be correct; and (2), that they be as simple as possible. We have

described a systematic procedure for generating such correct and succinct user-models and

interfaces.

The discussion and the examples illustrate that even for machines that are seemingly simple,

i.e., that have very few states and straightforward task specifications, finding a correct interface and

user-model is not a trivial matter. Interfaces that intuitively may appear to be correct are shown,

after atSplying formal verification, to be faulty. It is therefore not surprising that we encounter so

many automation problems in commonly encountered systems. Indeed, such problems can be

found in almost every computer-based system.

Thus, the main focus of the report is on a systematic procedure for constructing correct and

succinct user-models and interfaces. The proposed reduction procedure generates interfaces that are

not necessarily intuitive or easily correlated with the underlying system (e.g., see the reduced user

model of Figure 15). Nevertheless, these user models are formally correct and efficient. They are

also, irreducible. This is a marked departure from the usual ad hoc and "straightforward" way of

constructing abstractions in interface design. But this change in approach is necessary, given the

complexity of current systems, the expected increase in complexity of future systems, and the ever-

increasing requirements for correct and reliable operation.

As discussed in the section "compatible states sets and covers," the proposed procedure may

lead to more than one possible minimal (irreducible) interface and user-model. That is, it may find
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severalminimalcovers(of maximalcompatibles).These minimal covers are all correct and

efficient reductions of the same machine and task-specification. Naturally, the decision as to which

one is selected constitutes a human-factors and/or engineering design decision. It affords the

designer with several candidate interfaces and allows designers the freedom to choose the most

appropriate one, given other design considerations such as Graphical User Interface considerations,

users' preferences, and ease of implementation.

While the discussion and examples have focused on discrete-event systems and finite state

machine representations, the approach is amenable to other type of representations. It remains,

however, an interesting topic of future research, to expand the approach to systems that have

continuous and discrete events (hybrid systems) as well as timed systems.
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Figure 3. Alternate interface and user model.
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